“離散的”な世界 等差数列の和、和から項数を求める、和が最大になる項数
新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.1(数列とその和)、等差数列の和の問7の解答を求めてみる。
新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.1(数列とその和)、等差数列の和の問7の解答を求めてみる。
続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3章(多変数の関数)、1(グラフと等位線)の練習問題2、3、4.の解答を求めてみる。
続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第3章(多変数の関数)、1(グラフと等位線)の練習問題1.の解答を求めてみる。
新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.1(数列とその和)、等差数列の和の問6の解答を求めてみる。
続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2章(ベクトルの微分)、2(曲線の長さ)の練習問題6.の解答を求めてみる。
新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.1(数列とその和)、等差数列とその一般項の問5の解答を求めてみる。
続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第2章(ベクトルの微分)、2(曲線の長さ)の練習問題5-a、b.の解答を求めてみる。
新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.1(数列とその和)、等差数列とその一般項の問4の解答を求めてみる。