数学のブログ

関数の変化をとらえる - 関数の極限と微分法 関数の極限 極限値の計算 収束、定数、式の変形

新装版 数学読本4 (松坂 和夫(著)、岩波書店)の第17章(関数の変化をとらえる - 関数の極限と微分法)、17.1(関数の極限)、極限値の計算の問4の解答を求めてみる。

1

lim x 1 ( x - 1 ) · x 2 + a x + b x - 1 = 0 · 5 = 0 lim x 1 ( x 2 + a x + b ) = 0 1 + a + b = 0 b = - a - 1

また、

lim x 1 x 2 + a x + b x - 1 = 5 lim x 1 x 2 + a x - a - 1 x - 1 = 5 lim x 1 ( x - 1 ) ( x + a + 1 ) x - 1 = 5 lim x 1 ( x + a + 1 ) = 5 1 + a + 1 = 5 a = 3

よって、

a = 3 , b = - 4

実際に確認。

lim x 1 x 2 + 3 x - 4 x - 1 = lim x 1 ( x - 1 ) ( x + 4 ) x - 1 = lim x 1 ( x + 4 ) = 5

2

lim x 3 ( x 2 - ( 3 + b ) x + 3 b ) · x 2 + a x + 6 x 2 - ( 3 + b ) x + 3 b = 0 · 2 5 = 0 lim x 3 ( x 2 + a x + 6 ) = 0 9 + 3 a + 6 = 0 a = - 5 lim x 3 x 2 - 5 x + 6 x 2 - ( 3 + b ) x + 3 b = 2 5 lim x 3 ( x - 3 ) ( x - 2 ) ( x - 3 ) ( x - b ) = 2 5 lim x 3 x - 2 x - b = 2 5 3 - 2 3 - b = 2 5 5 = 2 ( 3 - b ) b = 1 2

3

lim x 2 ( x 3 + a x + b ) · x 2 - x - 2 x 3 + a x + b = ( 8 + 2 a + b ) · 1 3 0 = 1 3 ( 8 + 2 a + b ) 8 + 2 a + b = 0 b = - 2 a - 8 lim x 2 x 2 - x - 2 x 3 + a x - 2 a - 8 = 1 3 lim x 2 ( x - 2 ) ( x + 1 ) ( x - 2 ) ( x 2 + 2 x + a + 4 ) = 1 3 lim x 2 x + 1 x 2 + 2 x + a + 4 = 1 3 3 12 + a = 1 3 9 = 12 + a a = - 3 b = - 2

4

lim x 1 ( x - 1 ) a x + 1 - b x - 1 = 0 · 2 = 0 a 2 - b = 0 b = a 2 lim x 1 a x + 1 - a 2 x - 1 = 2 lim x 1 a ( x + 1 - 2 ) x - 1 = 2 lim x 1 a ( x + 1 - 2 ) ( x - 1 ) ( x + 1 + 2 ) = 2 lim x 1 a x + 1 + 2 = 2 a 2 2 = 2 a = 4 b = 4 2