行列の指数関数 三角関数(正弦と余弦)、マクローリン展開、指数関数の積、和の指数関数 手を動かしてまなぶ 線形代数 楽天ブックス Yahoo!ショッピング au PAY マーケット 学習環境 Surface Windows 10 Pro (OS) Nebo(Windows アプリ) iPad MyScript Nebo - MyScript(iPad アプリ(iPadOS ) ハンズ・オン・スタートMathematica® -Wolfram言語™によるプログラミング(参考書籍) Pythonからはじめる数学入門(参考書籍) 手を動かしてまなぶ 線形代数 (藤岡 敦(著)、裳華房)の第4章(行列の指数関数)、12(行列の指数関数)、基本問題の問12.5の解答を求めてみる。 1 exp A = exp [ a b - b a ] = exp ( [ a 0 0 a ] + [ 0 b - b 0 ] ) = exp [ a 0 0 a ] exp [ 0 b - b 0 ] = ( E + ∑ n = 1 ∞ 1 n ! [ a 0 0 a ] n ) ( E + ∑ n = 1 ∞ 1 n ! [ 0 b - b 0 ] n ) = ( E + ∑ n = 1 ∞ 1 n ! [ a n 0 0 a n ] ) ( E + ∑ n = 1 ∞ 1 n ! ( b [ 0 1 - 1 0 ] ) n ) = ( ∑ n = 0 ∞ 1 n ! [ a n 0 0 a n ] ) ( E + ∑ n = 1 ∞ b n n ! [ 0 1 - 1 0 ] n ) = [ ∑ n = 0 ∞ a n n ! 0 0 ∑ n = 0 ∞ a n n ! ] ( E + ∑ n = 1 ∞ b n n ! [ 0 1 - 1 0 ] n ) = [ e a 0 0 e a ] ( E + ∑ n = 1 ∞ b n n ! [ 0 1 - 1 0 ] n ) また、 [ 0 1 - 1 0 ] 2 = [ - 1 0 0 - 1 ] [ 0 1 - 1 0 ] 3 = [ 0 - 1 1 0 ] [ 0 1 - 1 0 ] 4 = [ 1 0 0 1 ] [ 0 1 - 1 0 ] 5 = [ 0 1 - 1 0 ] なので、 E + ∑ n = 1 ∞ b n n ! [ 0 1 - 1 0 ] n = [ 1 0 0 1 ] + [ ∑ n = 1 ∞ ( - 1 ) n ( 2 n ) ! b 2 n ∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) ! b 2 n + 1 - ∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) ! b 2 n + 1 ∑ n = 1 ∞ ( - 1 ) n ( 2 n ) ! b 2 n ] = [ ∑ n = 0 ∞ ( - 1 ) n ( 2 n ) ! b 2 n sin b - sin b ∑ n = 0 ∞ ( - 1 ) n 2 n ! b 2 n ] = [ cos b sin b - sin b cos b ] よって、 exp A = [ e a 0 0 e a ] [ cos b sin b - sin b cos b ] = [ e a cos b e a sin b - e a sin b e a cos b ] 2 exp A = exp [ 0 1 0 0 ] = E + ∑ n = 1 ∞ 1 n ! [ 0 1 0 0 ] n = [ 1 0 0 1 ] + [ 0 1 0 0 ] = [ 1 1 0 1 ] また、 exp B = exp [ 0 0 - 1 0 ] = E + ∑ n = 1 ∞ 1 n ! [ 0 0 - 1 0 ] n = [ 1 0 0 1 ] + [ 0 0 - 1 0 ] = [ 1 0 - 1 1 ] よって、 ( exp A ) ( exp B ) = [ 1 1 0 1 ] [ 1 0 - 1 1 ] = [ 0 1 - 1 1 ] また、 exp ( A + B ) = exp [ 0 1 - 1 0 ] 1より、 exp ( A + B ) = [ cos 1 sin 1 - sin 1 cos 1 ] 3 [ a b c - a ] 2 = [ a 2 + b c 0 0 a 2 + b c ] = - m 2 π 2 [ 1 0 0 1 ] [ a b c - a ] 3 = - m 2 π 2 [ a b c - a ] [ a b c - a ] 4 = m 4 π 4 [ 1 0 0 1 ] [ a b c - a ] 5 = m 4 π 4 [ a b c - a ] [ a b c - a ] 6 = - m 6 π 6 [ a b c - a ] よって、 exp [ a b c - a ] = E + ∑ n = 1 ∞ 1 n ! [ a b c - a ] n = [ 1 0 0 1 ] + ∑ n = 1 ∞ ( - 1 ) n ( 2 n ) ! ( m π ) 2 n [ 1 0 0 1 ] + 1 m π ∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) ! ( m π ) ( 2 n + 1 ) [ a b c - a ] = ∑ n = 0 ∞ ( - 1 ) n ( 2 n ) ! ( m π ) 2 n [ 1 0 0 1 ] + 1 m π sin ( m π ) [ a b c - a ] = ( cos ( m π ) ) E ゆえに、 mが偶数のとき、 ( cos ( m π ) ) E = E mが奇数のとき、 ( cos ( m π ) ) E = - E