数学のブログ

2重積分 反復積分 領域、対数関数、三角関数(正弦と余弦)、対数関数

続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第7章(2重積分)、2(反復積分)の練習問題8の解答を求めてみる。

a

1 2 0 x 1 x + y dy dx = 1 2 [ log ( x + y ) ] 0 x dx = 1 2 ( log ( 2 x ) - log x ) dx = 1 2 log 2 dx = [ x ] 1 2 log 2 = log 2

b

x 2 - y 2 0 y 2 x 2 - x 2 y 2 x 2

求める積分。

2 0 1 0 x 2 ( x 2 - y 2 ) dy dx = 2 0 1 [ x 2 y - 1 3 y 3 ] 0 x 2 dx = 2 0 1 ( x 3 - 1 3 x 3 ) dx = 4 3 0 1 x 3 dx = 1 3 [ x 4 ] 0 1 = 1 3

c

0 π 0 1 x sin ( x y ) dy dx = - 0 π [ cos ( x y ) ] 0 1 dx = 0 π ( 1 - cos x ) dx = [ x - sin x ] 0 π = π

d

- 1 0 - x 1 ( x 2 - y 2 ) dy dx + 0 1 x 1 ( x 2 - y 2 ) dy dx = - 1 0 [ x 2 y - 1 3 y 3 ] - x 1 dx + 0 1 [ x 2 y - 1 3 y 3 ] x 1 dx = - 1 0 ( x 2 - 1 3 + x 3 - 1 3 x 3 ) dx + 0 1 ( x 2 - 1 3 - x 3 + 1 3 x 3 ) dx = - 1 0 ( - 1 3 + x 2 + 2 3 x 3 ) dx + 0 1 ( - 1 3 + x 2 - 2 3 x 3 ) dx = [ - 1 3 x + 1 3 x 3 + 1 6 x 4 ] - 1 0 + [ - 1 3 x + 1 3 x 3 - 1 6 x 4 ] 0 1 = ( - 1 3 + 1 3 - 1 6 ) - 1 6 = - 1 3

e

0 1 0 1 1 x + y + 1 dy dx = 0 1 [ log ( x + y + 1 ) ] 0 1 dx = 0 1 ( log ( x + 2 ) - log ( x + 1 ) ) d x
log ( x + 2 ) dx = x log ( x + 2 ) - x x + 2 dx = x log ( x + 2 ) - ( 1 - 2 x + 2 ) dx = x log ( x + 2 ) - x + 2 log ( x + 2 ) log ( x + 1 ) dx = x log ( x + 1 ) - x + log ( x + 1 )
[ x log ( x + 2 ) - x log ( x + 1 ) + 2 log ( x + 2 ) - log ( x + 1 ) ] 0 1 = log 3 - log 2 + 2 log 3 - log 2 - 2 log 2 = 3 log 3 - 4 log 2