2重積分 反復積分 積、累乗、三角関数(正弦と余弦と正接と正割) 続 解析入門 (原書第2版) 楽天ブックス Yahoo!ショッピング au PAY マーケット 原著: Calculus of Several Variables 学習環境 Surface Windows 10 Pro (OS) Nebo(Windows アプリ) iPad MyScript Nebo - MyScript(iPad アプリ(iPadOS)) ハンズ・オン・スタートMathematica® -Wolfram言語™によるプログラミング(参考書籍) Pythonからはじめる数学入門(参考書籍) 続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第7章(2重積分)、2(反復積分)の練習問題1の解答を求めてみる。 a ∫ 0 2 ∫ 1 3 ( x + y ) dx dy = ∫ 0 2 [ 1 2 x 2 + y x ] 1 3 dy = ∫ 0 2 ( 4 + 2 y ) dy = [ 4 y + y 2 ] 0 2 = 12 b ∫ 0 2 ∫ 1 x 2 y dy dx = ∫ 0 2 [ 1 2 y 2 ] 1 x 2 dx = 1 2 ∫ 0 2 ( x 4 - 1 ) dx = 1 2 [ 1 5 x 5 - x ] 0 2 = 1 2 ( 32 5 - 2 ) = 16 5 = 11 5 c ∫ 0 1 ∫ y 2 y x dx dy = 2 3 ∫ 0 1 [ x 3 2 ] y 2 y dy = 2 3 ∫ 0 1 ( y 3 2 - y 3 ) dy = 2 3 [ 2 5 y 5 2 - 1 4 y 4 ] 0 1 = 2 3 ( 2 5 - 1 4 ) = 2 3 · 8 - 5 20 = 1 10 d ∫ 0 π ∫ 0 x x sin y dy dx = ∫ 0 π x [ - cos y ] 0 x d x = ∫ 0 π x ( - cos x + 1 ) dx = - ∫ 0 π x cos x d x + [ 1 2 x 2 ] 0 π = [ - x sin x ] 0 π + ∫ 0 π sin x dx + 1 2 π 2 = [ - cos x ] 0 π + 1 2 π 2 = 2 + 1 2 π 2 e ∫ 1 2 ∫ y y 2 dx dy = ∫ 1 2 ( y 2 - y ) dy = [ 1 3 y 3 - 1 2 y 2 ] 1 2 = 7 3 - 3 2 = 14 - 9 6 = 5 6 f ∫ 0 π ∫ 0 sin x y dy dx = 1 2 ∫ 0 π [ y 2 ] 0 sin x d x = 1 2 ∫ 0 π sin 2 x dx = 1 2 ∫ 0 π 1 - cos 2 x 2 dx = 1 4 [ x - 1 2 sin 2 x ] 0 π = π 4 g ∫ 0 π 2 ∫ 0 2 r 2 cos θ d r d θ = 1 3 ∫ 0 π 2 [ r 3 ] 0 2 cos θ d θ = 8 3 [ sin θ ] 0 π 2 = 8 3 h ∫ 0 2 π ∫ 0 1 - cos θ r 3 cos 2 θ d r d θ = 1 4 ∫ 0 2 π [ r 4 ] 0 1 - cos θ cos 2 θ d θ = 1 4 ∫ 0 2 π ( 1 - cos θ ) 4 cos 2 θ d θ = 1 4 ∫ 0 2 π ( cos 6 θ - 4 cos 5 θ + 6 cos 4 θ - 4 cos 3 θ + cos 2 θ ) d θ = ∫ 0 π 2 ( cos 6 θ + 6 cos 4 θ + cos 2 θ ) d θ = π 2 ( 5 · 3 6 · 4 · 2 + 6 · 3 4 · 2 + 1 2 ) = π 2 ( 5 16 + 9 4 + 1 2 ) = ( 5 + 36 + 8 ) π 32 = 49 π 32 i ∫ 0 arctan 3 2 ∫ 0 2 sec θ r d r d θ = 1 2 ∫ 0 arctan 3 2 ( 2 sec θ ) 2 d θ = 2 ∫ 0 arctan 3 2 sec 2 θ d θ = 2 [ tan θ ] 0 arctan 3 2 = 2 · 3 2 = 3