数学のブログ

数列と関数 数列 数列の和 累乗

現代数学への入門 微分と積分1 初等関数を中心に (青本 和彦(著)、岩波書店)の第1章(数列と関数)、1.1(数列)、c(数列の和)の問13の解答を求めてみる。

m = 1

おけば、

a n = n S N = N ( N + 1 ) 1 + 1 = N ( N + 1 ) 2

よって、

k = 1 S N 1 = n = 1 N n = n = 1 N a n = N ( N + 1 ) 2
k = 2 m = 2 a n = n ( n + 1 ) = n 2 + n S N = N ( N + 1 ) ( N + 2 ) 3 S N 2 = n = 1 N n 2 = n = 1 N ( a n - n ) = n = 1 N a n - n = 1 N n = S N - S N 1 = N ( N + 1 ) ( N + 2 ) 3 - N ( N + 1 ) 2 = N ( N + 1 ) ( 2 N + 4 - 3 ) 6 = N ( N + 1 ) ( 2 N + 1 ) 6
k = 3 m = 3 a n = n ( n + 1 ) ( n + 2 ) = ( n 2 + n ) ( n + 2 ) = n 3 + 3 n 2 + 2 n S N = N ( N + 1 ) ( N + 2 ) ( N + 3 ) 4 S N 3 = n = 1 N n 3 = n = 1 N a n - 3 n = 1 N n 2 - 2 n = 1 N n = S N - 3 S N 2 - 2 S N 1 = N ( N + 1 ) ( N + 2 ) ( N + 3 ) 4 - N ( N + 1 ) ( 2 N + 1 ) 2 - N ( N + 1 ) = N ( N + 1 ) ( ( N + 2 ) ( N + 3 ) - 2 ( 2 N + 1 ) - 4 ) 4 = N ( N + 1 ) ( N 2 + N ) 4 = N 2 ( N + 1 ) 2 4 = ( N ( N + 1 ) 2 ) 2 = ( S N 1 ) 2
k = 4 m = 4 a n = n ( n + 1 ) ( n + 2 ) ( n + 3 ) = ( n 2 + n ) ( n 2 + 5 n + 6 ) = n 4 + 6 n 3 + 11 n 2 + 6 n S N = 1 5 k = 0 4 ( N + k ) S N 4 = n = 1 N n 4 = n = 1 N a n - 6 n = 1 N n 3 - 11 n = 1 N n 2 - 6 n = 1 N n = 1 5 k = 0 4 ( N + k ) - 3 N 2 ( N + 1 ) 2 2 - 11 N ( N + 1 ) ( 2 N + 1 ) 6 - 3 N ( N + 1 ) = N ( N + 1 ) ( 6 ( N + 2 ) ( N + 3 ) ( N + 4 ) - 45 N ( N + 1 ) - 55 ( 2 N + 1 ) - 90 ) 30 = N ( N + 1 ) ( 6 N 3 + 9 N 2 + N - 1 ) 30