自然法則の微分方程式 微分方程式の用語 一般解、初期条件、特解、指数関数、三角関数、正弦と余弦、円
微分方程式演習〈理工系の数学入門コース/演習 新装版〉 (和達 三樹(著)、矢嶋 徹(著)、岩波書店)の第1章(自然法則の微分方程式)、1-4(微分方程式の用語)、問題4の解答を求めてみる。
1
定数を求める。
よって、特解は
2
3
4
5
初期条件より
6
コード(Wolfram Language, Jupyter)
DSolveValue[{y'[x] == f[x]y[x], y[x0] == 1}, y[x], x]
DSolveValue[{y''[x] -3y'[x] + 2y[x] == 0, y[0] == 0, y'[0] == -1}, y[x], x]
Expand[%]
Plot[%, {x, -5, 5}]
DSolveValue[{y''[x] + o^2y[x] == Sin[o x], y[0] == y0, y'[0] == 0}, y[x], x]
Expand[%]
Simplify[%]
DSolveValue[{y[x]y'[x] + x == 0, y[1/2] == -Sqrt[3] / 2}, y[x], x]
Inverse functions are being used by `1`, so some solutions may not be found; use Reduce for complete solution information.: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.
For some branches of the general solution, the given boundary conditions lead to an empty solution.: For some branches of the general solution, the given boundary conditions lead to an empty solution.
Plot[%, {x, -1, 1}]
DSolveValue[{y'[x] + Exp[-x] / (Exp[x] + Exp[-x]) y[x]^2 - y[x] + Exp[x] / (Exp[x] + Exp[-x]) == 0,
y[0] == 2}, y[x], x]
Simplify[%]
% == (3 + Exp[x]) / (3 - Exp[-x])
Simplify[%]
Plot[(3 + Exp[x]) / (3 - Exp[-x]), {x, -5, 5}]