数学のブログ

変数と関数 関数の極限 累乗、指数関数、方向、符号

微分積分演習〈理工系の数学入門コース/演習 新装版〉 (和達 三樹(著)、十河 清(著)、岩波書店)の第2章(変数と関数)、2-2(関数の極限)、問題2の解答を求めてみる。

1

lim x ( x + 1 - x ) = lim x 1 x + 1 + x = 0

2

lim x x ( x 2 + 1 - x ) = lim x x ( x 2 + 1 - x 2 ) x 2 + 1 + x
= lim x x x 2 + 1 + x
= lim x 1 1 + 1 x 2 + 1
= 1 2

3

lim x + 0 e - 1 x = lim x e - x = 0

4

lim x - 0 e - 1 x = lim x 0 e 1 x = lim x 0 e =

コード(Wolfram Language, Jupyter)

Limit[Sqrt[x+1]-Sqrt[x], x -> Infinity]
0
Limit[x(Sqrt[x^2+1]-x), x -> Infinity]
Output
Limit[Exp[-1/x], x -> 0, Direction -> -1]
0
Limit[Exp[-1/x], x -> 0, Direction -> 1]
Output
Plot[Sqrt[x+1] - Sqrt[x], {x, 0, 10}]
Output
Plot[x(Sqrt[x^2+1]-x), {x, -5, 5}]
Output
Plot[Exp[-1/x], {x, -10, 10}]
Output