数学のブログ

合成微分律と勾配ベクトル 接平面 曲面、接平面の方程式、内積

続 解析入門 (原書第2版) (S.ラング(著)、松坂 和夫(翻訳)、片山 孝次(翻訳)、岩波書店)の第4章(合成微分律と勾配ベクトル)、2(接平面)の練習問題10の解答を求めてみる。

f ( x , y , z ) = x 2 + y 2 - z 2

とおく。

g r a d f ( X ) = ( 2 x , 2 y , - 2 z ) = 2 ( x , y , - z ) g r a d f ( 3 , 5 , - 4 ) = 2 ( 3 , 5 , 4 )

よって求める接平面の方程式は、

3 x + 5 y - 4 z = 9 + 25 - 16 3 x + 5 y + 4 z = 18

コード(Wolfram Language, Jupyter)

ContourPlot3D[
    {
        x^2+y^2-z^2==18,
        3x+5y+4z==18
    },
    {x, 0, 10},
    {y, 0, 10},
    {z, -10, 0}
]
Output
ContourPlot3D[
    {
        x^2+y^2-z^2==18,
        3x+5y+4z==18
    },
    {y, 0, 10},
    {z, -10, 0},
    {x, 0, 10}
]
Output
ContourPlot3D[
    {
        x^2+y^2-z^2==18,
        3x+5y+4z==18
    },
    {z, -10, 0},
    {x, 0, 10},
    {y, 0, 10}
]
Output