ベクトルの基本的性質 ベクトルの3重積 公式、内積
ベクトル解析演習〈理工系の数学入門コース/演習 新装版〉 (戸田 盛和(著)、渡辺 慎介(著)、岩波書店)の第1章(ベクトルの基本的性質)、1-5(ベクトルの3重積)、問題2の解答を求めてみる。
コード(Wolfram Language, Jupyter)
a = {ax, ay, az};
b = {bx, by, bz};
c = {cx, cy, cz};
Cross[a, Cross[b, c]] == b(c . a) - c(a . b)
Simplify[%]
a = RandomInteger[{-10, 10}, {3}]
b = RandomInteger[{-10, 10}, {3}]
c = RandomInteger[{-10, 10}, {3}]
o = {0, 0, 0};
Graphics3D[Arrow[{o, Cross[a, Cross[b, c]]}]]
Graphics3D[Arrow[{o, b (c . a) - c (a . b)}]]
Graphics3D[{
Red, Arrow[{o, a}],
Green, Arrow[{o, b}],
Blue, Arrow[{o, c}],
Brown, Arrow[{o, Cross[a, Cross[b, c]]}]
},
Axes -> True,
AspectRatios -> {1, 1, 1},
PlotLegends -> Automatic
]
a = RandomReal[{-2, 2}, {3}]
b = RandomReal[{-2, 2}, {3}]
c = RandomReal[{-2, 2}, {3}]
<div><div class="grid-container"><div class="grid-item"><pre style="font-family: "Courier New",Courier,monospace;">{1.03956, -0.214573, -1.50663}</pre></div><div class="grid-item"><pre style="font-family: "Courier New",Courier,monospace;">{-1.30568, 1.57185, -1.83274}</pre></div><div class="grid-item"><pre style="font-family: "Courier New",Courier,monospace;">{0.761185, -0.52425, -0.0298715}</pre></div></div></div>
Graphics3D[{
Red, Arrow[{o, a}],
Green, Arrow[{o, b}],
Blue, Arrow[{o, c}],
Purple, Arrow[{o, Cross[b, c]}],
Brown, Arrow[{o, Cross[a, Cross[b, c]]}]
},
Axes -> True,
AspectRatios -> {1, 1, 1}
]