数学のブログ

複素数と複素平面 複素数の極形式 オイラーの公式、指数関数、微分方程式の解、初期条件

複素関数演習〈理工系の数学入門コース/演習 新装版〉 (表 実(著)、迫田 誠治(著)、岩波書店)の第1章(複素数と複素平面)、1-3(複素数の極形式)、問題6の解答を求めてみる。

1

d dx f ± k ( x ) = d dx ( cos ( ± k x ) + i sin ( ± k x ) )
= k sin ( ± k x ) ± k i cos ( ± k x )
= ± i k ( - 1 i sin ( ± k x ) + cos ( ± k x ) )
= ± i k ( cos ( ± k x ) + i sin ( ± k x ) )
= ± i k e ± k i x

2

d 2 dx 2 f ± k ( x ) = ± i k d dx e ± k i x = ( ± i k ) 2 e ± k i x = - k 2 e ± i k x

3

i

f ( x ) = e i k x

ii

f ( x ) = e - i k x

iii

f ( x ) = a e i k x + b e - i k x
f ( 0 ) = a + b = 0 f ' ( 0 ) = a i k - b i k = k b = - a 2 a i = 1 a = 1 2 i y = - 1 2 i
f ( x ) = 1 2 i e i k x - 1 2 i e - i k x

iv

f ( 0 ) = a + b = 1 f ' ( 0 ) a i k - b i k = 0 a = b = 1 2
f ( x ) = 1 2 e i k x + 1 2 e - i k x

コード(Wolfram Language, Jupyter)

DSolve[{f''[x] == -k^2f[x], f[0] == 1, f'[0] == I k}, f[x], x]
Output
DSolveValue[{f''[x] == -k^2f[x], f[0] == 1, f'[0] == I k}, f[x], x]
Output
% == Exp[I k x]
Output
Simplify[%]
Output
DSolveValue[{f''[x] == -k^2f[x], f[0] == 1, f'[0] == -I k}, f[x], x]
Output
% == Exp[-I k x] // Simplify
Output
DSolveValue[{f''[x] == -k^2f[x], f[0] == 0, f'[0] == k}, f[x], x]
Output
% == (Exp[I k x] - Exp[-I k x]) / (2I) // Simplify
Output
DSolveValue[{f''[x] == -k^2f[x], f[0] == 1, f'[0] == 0}, f[x], x]
Output
% == (Exp[I k x] + Exp[-I k x]) / 2 // Simplify
Output