数学のブログ

複素数と複素平面 複素数とその四則演算 二項定理、階乗、組み合わせ、帰納法

複素関数演習〈理工系の数学入門コース/演習 新装版〉 (表 実(著)、迫田 誠治(著)、岩波書店)の第1章(複素数と複素平面)、1-1(複素数とその四則演算)、問題4の解答を求めてみる。

1

( α + β ) n
= ( α + β ) ( α + β ) n - 1
= ( α + β ) r = 0 n - 1 ( n - 1 r ) α n - 1 - r β r
= r = 0 n - 1 ( n - 1 r ) α n - r β r + r = 0 n - 1 ( n - 1 r ) α n - 1 - r β r + 1
= α n + r = 1 n - 1 ( n - 1 r ) α n - r β r + r = 1 n ( n - 1 r - 1 ) α n - 1 - ( r - 1 ) β r
= α n + r = 1 n - 1 ( n - 1 r ) α n - r β r + r = 1 n ( n - 1 r - 1 ) α n - r β r
= α n + r = 1 n - 1 ( n - 1 r ) α n - r β r + r = 1 n - 1 ( n - 1 r - 1 ) α n - r β r + β n
= α n + r = 1 n - 1 ( ( n - 1 r ) + ( n - 1 r - 1 ) ) α n - r β r + β n

また、

( n - 1 r ) + ( n - 1 r - 1 )
= ( n - 1 ) ! r ! ( n - 1 - r ) ! + ( n - 1 ) ! ( r - 1 ) ! ( n - 1 - ( r - 1 ) ) !
= ( n - 1 ) ! r ! ( n - r - 1 ) ! + ( n - 1 ) ! ( r - 1 ) ! ( n - r ) !
= ( n - r + r ) ( n - 1 ) ! r ! ( n - r ) !
= n ! r ! ( n - r ) !
= ( n r )

よって、

( α + β ) n
= α n + r = 1 n - 1 ( n r ) α n - r β r + β n
= r = 0 n ( n r ) α n - r β r

よって、 帰納法により すべての非負整数について成り立つ。

(証明終)

2

( 1 2 + i 2 ) 4 n
= r = 0 4 n ( 4 n r ) ( 1 2 ) 4 n - r ( i 2 ) r
= r = 0 2 n ( 4 n 2 r ) ( 1 2 ) 4 n - 2 r ( i 2 ) 2 r + r = 0 2 n - 1 ( 4 n 2 r + 1 ) ( 1 2 ) 4 n - ( 2 r + 1 ) ( i 2 ) 2 r + 1
= ( 1 2 ) 4 n ( r = 0 2 n ( 4 n 2 r ) ( - 1 ) r + i r = 0 2 n ( 4 n 2 r + 1 ) ( - 1 ) r )
= ( 1 4 ) n ( - 4 ) n
= ( - 1 ) n

(証明終)

コード(Wolfram Language, Jupyter)

(a + b)^n == Sum[Binomial[n, r] a^(n - r) b^r, {r, 0, n}]
Output
(1/Sqrt[2] + I/Sqrt[2])^(4n)
Output
Simplify[%, Element[n, PositiveIntegers]]
Output
Factor[%]
Output
Expand[%]
Output
Simplify[%, Element[n, PositiveIntegers]]
Output
nums = Table[%, {n, 0, 10}]
{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1}
ListPlot[nums]
Output
ListLinePlot[nums]
Output