数学のブログ

自然法則の微分方程式 微積分の予備知識 不定積分、三角関数(正弦と余弦、逆正弦関数、逆正接関数)、双曲線余弦関数、正接関数、指数関数、対数関数、部分積分法、置換積分法

微分方程式演習〈理工系の数学入門コース/演習 新装版〉 (和達 三樹(著)、矢嶋 徹(著)、岩波書店)の第1章(自然法則の微分方程式)、1-1(微積分の予備知識)、問題2の解答を求めてみる。

1

1 1 + a 2 x 2 dx
= 1 a arctan ( a x )

2

x = a ( sin u )

とおく。

dx d u = a ( cos u )
1 a 2 - a 2 sin 2 u a ( cos u ) d u
= 1 a 1 - sin 2 u a ( cos u ) d u
= 1 a cos 2 u a ( cos u ) d u
= a ( cos u ) a ( cos u ) d u
= 1 d u
= u
= arcsin x a

3

1 cosh 2 a x dx = 1 a tanh a x

4

1 cosh x dx
= 1 e x + e - x 2 dx
= 2 1 e x + e - x dx
= 2 e x ( e x ) 2 + 1 dx
= 2 arctan e x

5

x 1 + x 4 dx = 1 2 arctan x 2

6

log x dx
= x log | x | - x · 1 x dx
= x log | x | - x

7

e x cos x dx
= e x cos x + e x sin x dx
= e x cos x + e x sin x - e x cos x dx

よって、

2 e x cos x dx = e x ( cos x + sin x )
e x cos x dx = e x 2 ( cos x + sin x )

8

x sin x dx
= - x cos x + cos x dx
= - x cos x + sin x

コード(Wolfram Language, Jupyter)

D[1 / a ArcTan[a x], x]
Output
Plot3D[
    %,
    {x, -5, 5},
    {a, -5, 5},
    AxesLabel -> Automatic
]
Output
D[ArcSin[x / a], x]
Output
Simplify[%]
Output
Plot3D[%, {x, -5, 5}, {a, -5, 5}, AxesLabel -> Automatic]
                                    1
Power::infy: Infinite expression -------- encountered.
                                 Sqrt[0.]



                                    1
Power::infy: Infinite expression -------- encountered.
                                 Sqrt[0.]



                                    1
Power::infy: Infinite expression -------- encountered.
                                 Sqrt[0.]



Further output of `1` will be suppressed during this calculation.: Further output of Power::infy will be suppressed during this calculation.
Output
D[1 / a Tanh[a x], x]
Output
% == 1 / Cosh[a x]^2
Output
Plot3D[Sech[a x]^2, {x, -5, 5}, {a, -5, 5}, AxesLabel -> Automatic]
Output
D[2 ArcTan[Exp[x]], x]
Output
% == 1 / Cosh[x]
Output
Simplify[%]
Output
Plot[1 / Cosh[x], {x, -5, 5}]
Output
D[1 / 2 ArcTan[x^2], x]
Output
Plot[%, {x, -5, 5}]
Output
D[x Log[x] - x, x]
Output
Plot[%, {x, -5, 5}]
Output
D[Exp[x] / 2 (Cos[x] + Sin[x]), x]
Output
Simplify[%]
Output
Plot[%, {x, -5, 5}]
Output
D[-x Cos[x] + Sin[x], x]
Output
Plot[%, {x, -2 Pi, 2 Pi}]
Output
Plot[x Sin[x], {x, -50, 50}]
Output