数学のブログ

ベクトルの内積 内積の定義と性質

内積・外積・空間図形を通してベクトルを深く理解しよう (数学のかんどころ 1) (飯高 茂(著, 編集)、中村 滋(編集)、岡部 恒治(編集)、桑田 孝泰(編集)、共立出版)の第2章(ベクトルの内積)、2.1(内積の定義と性質)の問題2.1の解答を求めてみる。

x + 2 y + 3 z = 0 - 4 x + 6 z = 0 x 2 + y 2 + z 2 = 1
z = 2 3 x x + 2 y + 2 x = 0 y = - 3 2 x x 2 + 9 4 x 2 + 4 9 x 2 = 1 36 x 2 + 81 x 2 + 16 x 2 = 36 x 2 = 36 133 x = ± 6 133 y = + - 9 133 z = ± 4 133

(複号同順)

コード(Wolfram Language, Jupyter)

a = {1, 2, 3};
b = {-4, 0, 6};
Solve[{a . x == b . x == 0, x . x == 1}, x]
This system cannot be solved with the methods available to Solve.: This system cannot be solved with the methods available to Solve.
Output
Solve[{a . x == 0, b . x == 0, x . x == 1}, x]
This system cannot be solved with the methods available to Solve.: This system cannot be solved with the methods available to Solve.
Output
v = {x, y, z};
Solve[{a . v == b . v == 0, v . v == 1}, v]
Output