数学のブログ

“離散的”な世界 数学的帰納法と数列 数列の帰納的定義 漸化式、階差数列、一次式の解、推定、等差数列、等比級数

新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.2(数学的帰納法と数列)、数列の帰納的定義の問32の解答を求めてみる。

1

階差数列。

b n = a n + 1 - a n = 2 n

よって、

n 2 a n = a 1 + k = 1 n - 1 b n = 1 + 2 · n ( n - 1 ) 2 = n 2 - n + 1

また、

1 2 - 1 + 1 = 1 = a n

よって、 求める 一般項は

a n = n 2 - n + 1

2

a n + 1 - a n = 3 n n 2 a n = a 1 + k = 1 n - 1 3 k = 2 + 3 ( 3 n - 1 - 1 ) 3 - 1 = 3 n + 1 2 3 1 + 1 2 = 2 = a 1

一般頃。

a n = 3 n + 1 2

3

x = 3 x - 2 x = 1
a n + 1 - 1 = 3 ( a n - 1 ) a 1 - 1 = 2 - 1 = 1 a n - 1 = 3 n - 1 a n = 3 n - 1 + 1

4

x = - 2 x + 9 x = 3
a n + 1 - 3 = - 2 ( a n - 3 ) a 1 - 3 = 1 - 3 = - 2 a n - 3 = ( - 2 ) ( - 2 ) n - 1 = ( - 2 ) n a n = ( - 2 ) n + 3

5

2 x = x - 6 x = - 6
2 ( a n + 1 + 6 ) = a n + 6 a n + 1 + 6 = 1 2 ( a n + 6 ) a 1 + 6 = 2 + 6 = 8 a n + 6 = 8 · ( 1 2 ) n - 1 a n = 8 2 n - 1 - 6

6

a 1 = 1 a 2 = 1 2 a 3 = 2 3 · 1 2 = 1 3
a n + 1 = n n + 1 · 1 n = 1 n + 1

よって、帰納法により

a n = 1 n

7

a 1 = 2 a 2 = 2 2 + 1 = 2 3 a 3 = 2 3 2 3 + 1 = 2 3 · 3 5 = 2 5 a 4 = 2 5 2 5 + 1 = 2 5 · 5 7 = 2 7 a 5 = 2 7 2 7 + 1 = 2 7 · 7 9 = 2 9
2 2 · 1 - 1 = 2 = a 1 a n + 1 = a n a n + 1 + 1 = 2 2 n - 1 2 2 n - 1 + 1 = 2 2 n - 1 · 2 n - 1 2 n + 1 = 2 2 ( n + 1 ) - 1

よって、帰納法により、

a n = 2 2 n - 1

8

a 1 = 3 a 2 = 3 a 3 = 6 a 4 = 12 a 5 = 24
a 2 = 3 = 3 · 2 n - 2
a n + 1 = k = 1 n a k
= 3 + k = 2 n a k
= 3 + k = 2 n 3 · 2 k - 2
= 3 + 3 · 2 n - 1 - 1 2 - 1
= 3 + 3 ( 2 n - 1 - 1 )
= 3 · 2 n - 1
= 3 · 2 ( n + 1 ) - - 2

よって、帰納法より一般項は、

a 1 = 3 n 2 a n = 3 · 2 n - 2

コード(Wolfram Language, Jupyter)

a1[n_] := n^2-n+1
a1[1] == 1
Output
a1[n + 1] == a1[n] + 2 n
Output
Simplify[%]
Output
a2[n_] := (3^n+1)/2
a2[1] == 2
Output
a2[n+1] == a2[n] + 3^n
Output
Simplify[%]
Output
a3[n_] := 3^(n-1) + 1
a3[1] == 2
Output
Simplify[a3[k + 1] == 3a3[k] - 2]
Output
a4[n_] := (-2)^n+3
a4[1] == 1
Output
Simplify[a4[k + 1] == -2a4[k] + 9]
Output
a[n_] := 8/2^(n-1) - 6
a[1] == 2
Output
Simplify[2a[k+1] == a[k] - 6]
Output
a[n_] := 1/n
a[1] == 1
Output
Simplify[a[k+1] == k/(k + 1)a[k]]
Output
a[n_] := 2/(2n-1)
a[1] == 2
Output
a[k+1] == a[k] / (a[k] + 1)
Output
Simplify[%]
Output
a[n_] := 3 2^(n-2)
a[k+1] == 3 + Sum[a[i], {i, 2, k}]
Output
Simplify[%]
Output