“離散的”な世界 数列とその和 平方の和、立方の和 和の級数、展開 新装版 数学読本3 楽天ブックス Yahoo! 学習環境 Surface Windows 10 Pro (OS) Nebo(Windows アプリ) iPad MyScript Nebo - MyScript(iPad アプリ(iPadOS)) ハンズ・オン・スタートMathematica® -Wolfram言語™によるプログラミング(参考書籍) Pythonからはじめる数学入門(参考書籍) 新装版 数学読本3 (松坂 和夫(著)、岩波書店)の第13章(“離散的”な世界 - 数列)、13.1(数列とその和)、平方の和、立方の和の問20の解答を求めてみる。 1 ∑ k = 1 n ( 3 k - 2 ) = 3 ∑ k = 1 n k - 2 n = 3 n ( n + 1 ) 2 - 2 n = 1 2 n ( 3 n - 1 ) 2 ∑ i = 1 n ( i + 1 ) ( 2 i - 1 ) = ∑ i = 1 n ( 2 i 2 + i - 1 ) = 2 · n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 - n = 1 6 n ( 2 ( n + 1 ) ( 2 n + 1 ) + 3 ( n + 1 ) - 6 ) = 1 6 n ( ( n + 1 ) ( 4 n + 5 ) - 6 ) = 1 6 n ( 4 n 2 + 9 n - 1 ) 3 ∑ i = 1 n i ( i + 2 ) = ∑ i = 1 n i 2 + 2 ∑ i = 1 n i = 1 6 n ( n + 1 ) ( 2 n + 1 ) + n ( n + 1 ) = 1 6 n ( n + 1 ) ( 2 n + 7 ) 4 ∑ j = 1 n j 2 + 3 ∑ j = 1 n j - 4 n = 1 6 n ( n + 1 ) ( 2 n + 1 ) + 3 2 n ( n + 1 ) - 4 n = 1 6 n ( ( n + 1 ) ( 2 n + 1 ) + 9 ( n + 1 ) - 24 ) = 1 6 n ( ( n + 1 ) ( 2 n + 10 ) - 24 ) = 1 3 n ( ( n + 1 ) ( n + 5 ) - 12 ) = 1 3 n ( n 2 + 6 n - 7 ) = 1 3 n ( n + 7 ) ( n - 1 ) 5 ∑ k = 1 n k ( k + 1 ) 2 = ∑ k = 1 n k ( k 2 + 2 k + 1 ) = ∑ k = 1 n k 3 + 2 ∑ k = 1 n k 2 + ∑ k = 1 n k = ( 1 2 n ( n + 1 ) ) 2 + 1 3 n ( n + 1 ) ( 2 n + 1 ) + 1 2 n ( n + 1 ) = 1 12 n ( n + 1 ) ( 3 n ( n + 1 ) + 4 ( 2 n + 1 ) + 6 ) = 1 12 n ( n + 1 ) ( 3 n 2 + 11 n + 10 ) = 1 12 n ( n + 1 ) ( n + 2 ) ( 3 n + 5 ) 6 ∑ k = 1 n ( 2 k 3 + 3 k 2 + k ) = 1 2 n 2 ( n + 1 ) 2 + 1 2 n ( n + 1 ) ( 2 n + 1 ) + 1 2 n ( n + 1 ) = 1 2 n ( n + 1 ) ( n ( n + 1 ) + 2 n + 1 + 1 ) = 1 2 n ( n + 1 ) ( n ( n + 1 ) + 2 ( n + 1 ) ) = 1 2 n ( n + 1 ) 2 ( n + 2 ) コード(Wolfram Language, Jupyter) an[k_] := 3k-2 Sum[an[k], {k, 1, n}] Factor[%] TraditionalForm[%] ListPlot[Table[an[k], {k, 1, 10}]] Sum[(i+1)(2i-1), {i, 1, n}] Sum[i(i+2), {i, 1, n}] Sum[(j^2+3j-4), {j, 1, n}] Factor[%] % // TraditionalForm Sum[k(k+1)^2, {k, 1, n}] Sum[2k^3+3k^2+k, {k, 1, n}]